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Abstract

This project presents the design and implementation of multiple AI-driven agents

for automated data sanitation. These system integrates large language models

(LLMs) with orchestration mechanisms to detect, evaluate, and redact sensitive

information from documents and communications. By combining detection, con-

textual analysis, and selective redaction tools, the agents provide a pipeline that

minimizes human intervention while maintaining accuracy and reliability. The

work addresses core challenges such as ambiguity in language, consistency across

diverse file formats, and scalability under real-time workloads. Results demonstrate

that the approach can effectively balance automation with user oversight, offering a

practical framework for enhancing data loss prevention in organizational contexts.

1 Introduction

1.1 Problem Setting

With large language models’ capability in achieving high benchmarks on zero and few shot learning

tasks, it has been increasingly popular to use the models as decision making agents [8]. "Agentic AI"

leverages the abilities of LLMs in natural language tasks ranging from programming to business, often

equipping the models with tool calls and enabling the agents to take action in a virtual environment.

Structuring the flow of data through agent-based systems involves data and UX engineering working

together to enable LLMs to perform tasks using tool calls or written text. Systems like Google

DeepMind’s AlphaEvolve iteratively improves code uses LLM workers in the generation, evaluation,

and even prompting steps [17], while other agents are observed to act as greedy game theoretic

players players when placed in negotiation environments [19].
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Data loss prevention (DLP) is an involved process that companies employ to prevent sensitive data

leakages. Traditional DLP systems use search-based methods to redact and replace potentially

sensitive content like phone numbers or bank details. In this work, we explore how the decision

making capabilities of LLMs broaden the abilities of these data loss prevention systems. We will

propose three novel data loss prevention frameworks and compare them to traditional DLP systems,

as well as adjacent agentic systems.

1.2 Conceptual Framework

In this paper, we will refer back to the conceptual framework of LLM agents as game players

performing actions in an environment. In the context of data loss prevention, the environment

can be thought of as the scope of data passed into a DLP system, and the agent’s actions are the

natural language tasks and tools that it is equipped with. In this work, we intend to leverage the few

shot learning capabilities of LLMs to act as agents in a data sanitation environment, and compare

this approach to traditional find and replace methods. Within this framework, these human-coded

replacement programs are still agents acting in an environment - here, we suggest using LLMs instead

of or in tandem with these programs to reduce data leakages. Further work could explore post training

language models to fine-tune them to the task of data loss prevention; in this work, we explore the

application of LLMs to the specific domain of data loss prevention.

1.3 Variables and Key Concepts

• Data Loss Prevention (DLP) - Data loss prevention systems aim to prevent data leakages

before they happen, by redacting information and shielding sensitive data from external

parties. This system concept is about proactively stopping data leaks, not just reacting to

them. By tasking the system to not only identify sensitive information but also filter it out

using an agent.

• Agent - A decision-maker that can take actions in an environment. Examples of agents in

the context of DLP are LLMs, find and replace methods, and RL models. In this case it is

simply the entity that performs the data sanitation. The most basic agent would parse and

have designated rules to find any particular sequence, while more complex agent are able to

make nuanced decisions that are based on the context of the data. Some models can even be

trained overtime to not rely on fixed patterns, creating unique programs fit for each users’

private data.

• Large Language Model (LLM) - A machine learning model that produces next-token

predictions based on previous inputs. In this study, we treat LLMs as agents working in a
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DLP environment and may use the two terms interchangeably at times. In this paper, we use

GPT 4o to power our systems, though we expect to see similar results with other LLMs.

1.4 Problem Statement

Our goal in this work is to research how using LLMs as agents in data loss prevention systems affects

user experience, accuracy, and security. In doing so, we have constructed a set of frameworks which

answer three driving questions to address this goal.

1. User Experience - How does the company associate pass data through our framework?

This goes beyond designing a simple upload interface, but rather something that the user will be able

to confidently review, submit feedback on, and approve. The success of the entire framework hinges

on the human-in-the-loop review process, and the agent’s effectiveness is reliant on the feedback

mechanism provided by the human user.

2. Agent Design - What actions can the agent take to filter out sensitive data?

The agent’s actions are not simple, pre-programmed rules, but must instead by dynamic, context-

aware decisions. By giving the agent a general set of instructions, it must parse the prompts and

search external infromation to create its own set of context to detect a wider range of sensitive data.

The preview where it communicates its intended changes will move beyond pattern recognition, and

will eventually showcase a deeper understanding of what makes data sensitive given a certain context.

The agent needs to be able to balance the goal of comprehensive redaction to preserve a document’s

or email’s utility and open ambiguity for the human user.

3. Security - How do we make the entire framework secure?

An agent designed to handle a user’s most sensitive information must be fortified against multiple

threats. The framework should prevent any prompt injection attacks, where a malicious user could

craft a prompt that tricks the agent into revealing sensitive data or bypassing sanitization rules. It

must also guarantee that the LLM, which may use a third-party service, does not retain or expose any

sensitive data it processes. The secure pipelines must implement robust access controls, encrypt all

data, and guarantee a redacted data without any leaks.

1.5 Sub-problems

The first problem resides in the trigger mechanism, where the agent decides when to act. This includes

detecting new files or inputs, and is the first step in the function execution. Ideally, the function will

automatically execute and set up the entire sanitization process without any manual intervention. The

next problem would help define what the agent actually does, focusing on the core logic and how the
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sequence of automated tasks is decided. This involves leveraging a language model to parse the data

provided within a document or email, deciding the sensitivity of the tokenized words, and calling

a redacting tool to remove the sensitive info. Finally, the agent has to unfold all of these tools in

the correct order, including going through user approval and interfacing with other tools to provide

redaction. This orchestrator will follow the detector and decide whether the redactor or detector needs

to be called again.

The second sub-problem lies in ambiguity resolution during detection. Language models can struggle

when a word or phrase carries multiple possible meanings, where only one interpretation may be

considered sensitive. Determining whether the tokenized context signals a need for redaction or

preservation requires fine-grained contextual analysis. Without clear resolution, the agent risks

either over-redacting content, which reduces utility, or under-redacting, which compromises security.

Balancing these competing risks is central to ensuring the system performs consistently across diverse

inputs.

The third sub-problem is maintaining consistency across different document structures and formats.

Documents, emails, and structured files often present sensitive information in varied layouts, such as

tables, headers, or embedded metadata. Adapting the agent to reliably detect and redact across these

heterogeneous formats is technically challenging, as the system must not only parse the content but

also preserve readability and integrity of the output after sanitization.

1.6 Performance Metric

To evaluate our proposed frameworks against similar tools, we will synthesize potentially sensitive

text data and score each framework by the scope, accuracy, and ease of use. These metrics will

refer to the precision and accuracy of the data sanitized, and provide a general score across multiple

models.

1.7 A Priority Hypothesis

We hypothesize that an agent-based DLP framework will achieve a higher percentage of correct

sensitive content redactions compared to traditional rule-based DLP systems.

1.8 Assumptions and Delimitations

This study focuses solely on textual data and does not address multimedia formats. We limit

comparisons to traditional search-based DLP systems and do not evaluate hybrid approaches.
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1.9 Importance of the Study

By integrating LLM-based agents into the DLP process, this study addresses the growing need for

contextually aware and adaptable data protection systems. The proposed frameworks aim to improve

redaction accuracy, reduce false positives and negatives, and create a more efficient workflow through

automation and human-in-the-loop validation. These contributions are particularly significant for

organizations handling large volumes of sensitive communications, where traditional pattern matching

approaches may be insufficient. Additionally, this study expands the general research of application

of LLMs as decision making agents.

2 Related Works

2.1 LLMs as Iterative Mutation Observers

Google DeepMind’s AlphaEvolve iteratively improves code by using LLM workers in the generation,

evaluation, and prompting steps [17]. Alpha Evolve has made several mathematical breakthroughs

including advancements in matrix multiplication algorithms and shape packing problems. The

algorithm behind Alpha Evolve starts with an empty python file and passes it through a distributed

controller loop until the output achieve some quantifiable evaluation threshold. First, the system

samples prompts, which have a human-written base plates but which employ an additional layer of

"meta-prompt evolution" that evaluates and selects promising prompts. Next, an LLM ensemble

uses these prompts to generate a series of diff changes that are intended to improve the code. The

modified code is then run through a user-provided evaluation function and the best modifications

are kept and improved on in the next iteration. This method itself is an evolution of an earlier work

out of Google Deepmind: FunBo [1], which uses Bayesian optimization to select and evolve valid

black-box functions which are difficult to evaluate. While program evolution is not directly related to

data loss prevention, these data pipelines outline how a system can employ an LLM into an agentic

framework. We will use similar frameworks to generate diff commands intended for data redaction

rather than code evolution.

2.2 Greedy Game Theoretic Players

Taking inspiration from reinforcement learning, LLM agents can be viewed as game players per-

forming actions in an environment. When tasked to operate as a budgeting manager, these models

exhibit greedy-like behavior in resource allocation [10]. Similar greedy behavior is exhibited when

they engage in negotiation and auction games [19]. LLMs benchmarks now span a wide range of

generalist and specialist evaluations [20], so research is focused on where best to apply these models.

Reinforcement learning with human feedback (RLHF) is a critical element in fine-tuning foundation
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models into helpful generalist agents, so it follows that game playing will improve with the quality

of the models themselves. In the context of data sanitation, LLMs will leverage their contextual

understanding to decern what content should and should not be flagged as sensitive, which can also

be though of as playing a game. Using true RL to fine-tune these models would require collecting

data out of the scope of this project. Still, equating the models to RL agents in a data sanitation

environment gives us insight into how to structure our data loss prevention frameworks.

2.3 Domain-Specific Applications of Sanitization

LLM-based anonymization has also been tested in specialized domains. Hasegawa’s work in the

medical field shows that LLMs outperform rule-based anonymization tools by offering stronger

resistance to adversarial inference while preserving more data utility [13]. This demonstrates the

trade-off between privacy and usability in sensitive contexts. Our project, while domain-agnostic,

can draw from these findings by recognizing that domain-specific fine-tuning or evaluation may be

necessary to ensure sanitization maintains data quality without over-scrubbing.

2.4 Hallucinations and Adversarial Explanations

As generalists that mimic many types of authors, Large Language models can exhibit unwanted

behaviors in certain contexts. When prompted, LLMs have been shown to fabricate explanations for

false conclusion which convince both human researchers other LLM agents[2]. These generously

named "hallucinations" stem from data, training, and inference stages [12]. In the context of DLP,

these fabrications can be mitigated by further fine-tuning to human preferences, but using RL is too

computationally expensive for this study.

2.5 Trade-offs in Data Sanitization

The broader implications of sanitization have been explored in empirical studies by Amazon re-

searchers, who found that aggressive sanitization improves privacy protection but may degrade model

performance across tasks such as classification and sentiment analysis [4]. This trade-off is central to

our project, as excessive redaction could reduce the usefulness of data for downstream applications.

These findings highlight the importance of calibration: a sanitization system must balance strict

protection with retaining sufficient semantic fidelity.

2.6 Trust, Risk, and Security Management Frameworks

Finally, larger frameworks such as TRiSM (Trust, Risk, and Security Management) provide conceptual

lenses for evaluating agentic systems. A recent survey identifies explainability, lifecycle governance,

and privacy protection as critical gaps in current AI deployments [5]. For our work, this reinforces
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the need to situate technical sanitization strategies within a broader framework that accounts not only

for adversarial robustness, but also for organizational trust and compliance requirements.

2.7 Human-Computer Interfaces for LLMs

A core driver of agentic systems is human-computer interaction (HCI). Systems like Windsurf and

Cursor equip agents with automatic in-line editing, while interfaces like ChatGPT use chat boxes

to give more control to the user. Some methods involve personalization of the agent to the user

using memory logs and other context management schema [14]. Because data loss prevention largely

focuses on how company associates transmit data externally, the user-agent interaction experience is

core to how our agentic frameworks are structured.

3 Methods

We developed two full-stack frameworks which approach data loss prevention in unique ways. All of

the code for both frameworks can be found on our Github at https://github.com/e10-nguyen/Agentic-

Data-Sanitizer.

3.1 Framework 1

This first framework uses Gmail and Google Docs as an interface to sanitize email drafts and

documents before they are sent. Intercepting sensitive data before it is exposed is a core tenet of data

loss prevention.

Company Associate

Sends emails and documents to people with a range of clearances.

Natural Lan-

guage Data (e.g.

Document, Email)

Sensitivity

Specification

Private Database

User approval

interface

Tool call interface Redaction Module

Redacted Data

LLM Agent

Calls redaction tools and interfaces with the database.
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Technologies Used

• Chrome Extensions - Chrome extensions are written in HTML and JavaScript, and act as

additional programs that run within the context of a browser. Much of the work creating

the extension was the modification of the content.js, background.js, and popup.js scripts.

The content.js script is run within the context of a webpage, and starts up whenever a

new page is visited. The content.js script is critical in getting and setting information

in the context or within the DOM of the current webpage. Working in the background,

background.js runs when Chrome is first launched, and can handle actions that need to work

asynchronously or between systems, such as API calls and other functions. In our system,

we used background.js script as a middleman between modules and APIs by using message

passing. This involves calling runtime.sendMessage() or tabs.sendMessage() in some

other script in the extension, which can send and receive a response from the background

script. Finally, the popup.js script is called whenever the extension itself is selected from the

chrome extension menu, and allowed us to create a user interface and other visual elements.

For the popup.js script, we implemented

• FastAPI - FastAPI is a modern python framework for REST API development. APIs, or

application program interfaces, allow for communication between two systems within a

broader network or framework. RESTful APIs implement standard HTTP methods like GET

and POST to allow for representational state transfer between a host and a client [6]. Here,

our Chrome extension acts as the client, and our backend written in python acts as the host.

We created methods like sanitize and sendsq to sanitize text and set the sanitation qualifier

respectively Our implementation isn’t truly RESTful because we set a retained sanitation

qualifier between API calls to simplify our framework, but it could be easily adapted to

RESTful design by grouping the qualifier with the sanitation request.

• Azure OpenAI - OpenAI’s GPT-4.1 language model has an API through Microsoft Azure

which is avalible through a Python library. This API lets us interface with the model through

a series of requests, and it provide access for different levels of priority through developer

and user prompts. To integrate this with our Chrome extension framework, we created

two separate Python classes to be used in our server: Model and Agent. The Model class

implements a standardized interface for calling the LLMs by having them inherit from a base

class containing a template for the model. From this, we implemented the GPT\_4\_1 class

which has all the same methods and data as the base Model class. By using OOP in this way,

we could implement and use many different types of language models such as GPT, Gemini

and Llama. Here, we chose only to implement GPT-4.1 for simplicity, but in the future, it

would be interesting to test the other models for our frameworks. The Agent class takes in a
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Figure 1: In-line interface for the Gmail text redaction extension. Sanitation button appears in-line,
and when clicked, replaces the current text with redacted text by interfacing with a FastAPI backend.
This method of redaction works seamlessly to sanitize sensitive emails before they are sent.

model as a parameter, and provides structure though a sequence of prompts and functions to

implement a sanitation agent. The main function in Agent is the sanitize\_text function,

which sanitizes the input text based on it’s internal sanitation qualifier and the developer

prompts we provide. We are then able to use this agent in our FastAPI server to sanitize the

Gmail drafts or other provided text.

To implement the Gmail front end, we created a chrome extension that automatically edits the content

of a new email draft. Chrome extensions primarily use content and background scripts to adaptively

modify the content of a page. We use a listener in the content script to intercept the HTML of the

page by finding the last selected text area. Implementing the Google Docs front end instead required

us to gather data from the user’s clipboard to perform the redaction.

Algorithm 1 Framework 1, Front End
1: ▷ A simplified picture of how the content.js and background.js scripts work together. ◁

2: lastActive = None
3: lastActiveValue = ""
4: while True do
5: if getLastActive().innerHTML != lastActive.innerHTML then
6: lastActive = getLastActive()
7: lastActiveValue = lastActive.innerHTML
8: if button.clicked() then
9: sanitizedText = fetch("POST http://localhost:3000/api/sanitize/" + lastActiveValue)

10: updateHTML(lastActive.id, sanitizedText)

The back end pipes the text through a LLM and responds with the newly sanitized text. To implement

the back end, we used Python with FastAPI because Python arguably has the broadest capabilities

for interfacing with machine learning models. In this framework, we used a sequence of prompts

to best identify and replace potentially sensitive content. We found that asking the model to do too

9



Figure 2: Floating button interface for the Google Docs text redaction extension. Sanitation button is
floating when text is copied, and when clicked, replaces the clipboard with redacted text by interfacing
with a FastAPI backend. This method allows for redaction among a range of scenarios when dealing
with a broader range of documents.

much in one step would lead to more pronounced formatting mistakes in the responses, leading to a

higher error rate in the system overall. The AI works well when generating boilerplate or identifying

erroneous results. The most useful application of generative AI in programming is in navigating APIs.

After decades of effort, large-scale software reuse has now become a reality through open source

software libraries and package managers that can easily install them. [15]

This first prompt is meant to help identify if any redaction actually needs to be performed, and give

some direction to the next agent. We ask the model to first explain if the text is sensitive based on a

set of guidelines, then reply with it’s decision of whether or not the text is sensitive.

1 IDENTIFICATION_PROMPT = \

2 ’’’You are a redaction agent. Your task is to evaluate whether a given

piece of text contains information that would be considered

sensitive from the perspective of the user.

3

4 The user has identified that these elements are sensitive: """

SENSITIVE_INFORMATION """. Do not redact anything else.

5

6 Respond with: The text may be sensitive because [brief explanation ].

The text may not be sensitive if [breif explanation ]. [Y/N: Y if

the text is sensitive , N if the text is not sensitive .]

7

8 Example input: Also , if you need VPN access while traveling , use the

temporary credentials: username: j.doe@company.com , password: ***

REDACTED_PASSWORD *** .

10



9 Example output: The text may be sensitive because it contains login

creditials. The text may not be sensitive if the receiver is

trusted. Y

10 ’’’

This second prompt provides the syntax for the tool call that the model will make given the explanation

and decision in the last step.

1 REDACTION_PROMPT = \

2 ’’’You are a redaction agent. The user will provide some sensitive

text. Your task is to redact the text by replacing sensitive

information with a brief description of the information.

3

4 Redact some parts of the text by responding with this command

separated by newlines:

5 REPLACE [text to be replaced] REPLACE_WITH [one to two word

description of the text]

6 Example input:

7 Also , if you need VPN access while traveling , use the temporary

credentials: username: j.doe@company.com , password: ***

REDACTED_PASSWORD *** .

8 Example output:

9 REPLACE j.doe@company.com REPLACE_WITH VPN email

10 REPLACE *** REDACTED_PASSWORD *** REPLACE_WITH VPN password

11

12 The user has identified that their text is sensitive because: """ HERE

""". Redact only the parts that fall under the category of: """

SENSITIVE_INFORMATION """. Do not redact anything else. Only

respond with the list of commands , do not include any other text.

13 ’’’

The current implementation of the tool call interface works much like the one in AlphaEvolve, by

having the LLM use the syntax REPLACE {some text} REPLACE_WITH {replacement text}.

API’s like OpenAI’s GPT-4o divides the developer prompts and user prompts with different levels of

priority; here, we use developer prompts to specify what the model’s syntax and output should look

like, and use user prompts to feed in the potentially sensitive data. This ensures that the context of

the data does not interfere with the format of the model’s output.

When using an LLM as an agent in this way, we are treating it as a black box that takes in some

instructions and produces a response from those instructions. We have to be careful when treating
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the LLM as a function because it has a larger scope than the rest of the program might expect. For

example, if we tell the LLM to use the "REPLACE" syntax but the model gets confused and uses

a different term, our code should handle these kind of exceptions. Having the model explain it’s

reasoning before making a decision mitigates the number of adversarial black box explanations the

model will produce without having to do any additional fine-tuning[2].

3.2 Framework 2

We’ve developed the Agentic PDF Data Sanitizer, an intelligent, multi-node system designed to

automatically detect, highlight, and redact sensitive information from PDF documents. Our system is

built using the LangGraph and LangChain frameworks, combining Azure AI services with human-

in-the-loop validation to ensure accurate and compliant data sanitization. The core functionality is

to intelligently clean sensitive information from PDFs, providing a secure and efficient solution for

handling confidential documents.

Table 1: The pipeline is structured around this set of nodes.

Node Input Output
Orchestrator User Prompt and PDF ad-

dress
Next Node (“Searcher” or
“Detector”)

Searcher Search query. Sensitive data information.

Detector Sensitive data info and PDF
address

Converted elements (text and
converted coordinates) Sensi-
tive information JSON (con-
tent, type, coordinates)

Highlighter Sensitive Information JSON
(coordinates)

Preview PDF with High-
lights

Evaluator Preview PDF, Sensitive
JSON, Converted Elements

“Redactor” or “Highlighter”
and updated sensitive JSON

Human-in-the-Loop Preview PDF “Y”/“N” decision, User’s
Feedback

Redactor Original PDF Address and
Sensitive JSON (coordi-
nates)

Final Redacted PDF Address

System Architecture

We designed a robust architecture leveraging state-of-the-art technologies to achieve our goals.

Core Technologies

• AI Framework: We use LangGraph for workflow orchestration and LangChain for creating

structured outputs from the Language Model.
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• Language Model: Azure OpenAI GPT-4o serves as the brain of our system, handling

intelligent decision-making and data detection.

• OCR Engine: Azure Document Intelligence provides precise, word-level text and coordinate

extraction from PDFs.

• Search: The Tavily API allows the system to conduct external research for regulatory

compliance.

• PDF Processing: We utilize PyMuPDF for all PDF manipulations, including coordinate

conversion, highlighting, and redaction.

• UI: A Streamlit interface facilitates our human-in-the-loop (HITL) interaction and validation

steps.

• API: An application programming interface is a connection or fetching, in technical terms,

between computers or between computer programs. It is a type of software interface,

offering a service to other pieces of software..

3.2.1 Node-Based Architecture

Our system operates through a graph of seven specialized nodes. While a shared state dictionary

flows between them, we’ve defined inputs and outputs for each node to clarify which state variables

are required and which are updated during its operation.

1. Orchestrator Node

The Orchestrator is the entry and routing hub of our workflow.

• Primary Functions:

– As the graph’s entry point, it processes the initial user prompt and the PDF file. It

uses Azure OpenAI to analyze the prompt, summarize it into structured "sensitive

data descriptions," and decide the next step. If the prompt requires external research

(e.g., "redact all data according to HIPAA"), it generates a search query and routes

to the Searcher; otherwise, it proceeds to the Detector.

– After a human review cycle where a user provides feedback, the Orchestrator re-

evaluates the new hints. It appends the new guidance to the existing sensitive data

descriptions and re-routes the workflow, again deciding between the Searcher and

Detector.

• Inputs: user_prompt, pdf_path, optional feedback hints from HITL.

• Outputs: The next node decision ("Searcher" or "Detector"), an updated

sensitive_data_description list, and an optional search_query.
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Figure 3: The PDF Agentic Data Sanitizer Pipeline
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2. Searcher Node (Optional)

This node enriches our detection context with external knowledge.

• Primary Functions: Based on a search query from the Orchestrator, we use the Tavily

API to find relevant compliance requirements for specific jurisdictions or industries.

The findings are then used to enhance the list of sensitive data descriptions.

• Inputs: search_query.

• Outputs: An enhanced sensitive_data_description list.

3. Detector Node (Core Detection Engine)

This is where the primary sensitive data identification occurs.

• Primary Functions:

– Case 1 (Initial Run): When first called, the Detector uses Azure Document

Intelligence to perform OCR, extracting every word as an element with precise

coordinates and a page number. We convert these coordinates to the PyMuPDF

format (72 points/inch) and assign a unique element_id to each word for tracking.

We then send a structured payload of these elements to Azure OpenAI, which

identifies sensitive items, groups related words (e.g., "01 JANUARY 1980"), and

returns a list of SensitiveItem objects with their content, coordinates, and a

justification.

– Case 2 (Refinement): If the workflow loops back from the Evaluator with feedback,

the Detector re-analyzes the already-extracted pdf_elements. It focuses on the

new feedback to modify the existing list of sensitive data, either by adding missed

items or removing false positives.

• Inputs: sensitive_data_description, optional existing pdf_elements.

• Outputs: A complete list of pdf_elements and a list of identified sensitive_data

items.

4. Highlighter Node

This node creates a visual preview for human validation.

• Primary Functions: Using the coordinates from the detected sensitive_data, this

tool generates a preview PDF. It applies a yellow highlight over each sensitive area

using PyMuPDF, allowing for clear visual verification.

• Inputs: sensitive_data, pdf_path.

• Outputs: The file path to the preview_pdf_path.

5. Evaluator Node (Quality Assurance)

This automated QA step refines detection accuracy before human review.
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• Primary Functions: The Evaluator uses an LLM to review the highlighted preview

against the full list of sensitive data descriptions and the extracted PDF elements. It

checks for false positives and false negatives. If discrepancies are found, it generates

specific feedback and routes back to the Detector. To prevent infinite loops, we limit

this feedback cycle to a maximum of three iterations. If the preview is satisfactory, it

routes to the Human-in-the-Loop node.

• Inputs: sensitive_data_description, preview_pdf_path, pdf_elements.

• Outputs: A quality assessment, a routing decision, and optional

evaluator_feedback appended to the sensitive data description.

6. Human-in-the-Loop (HITL) Node

This is the final checkpoint before irreversible redaction.

• Primary Functions: We present the highlighted preview PDF to the user for manual

validation. The user can either approve the redaction plan or reject it. If they reject it,

we prompt them for hints, which are sent back to the Orchestrator to refine the process.

• Inputs: preview_pdf_path, user approval status ("Yes" or "No").

• Outputs: An approval decision and optional user hints for the Orchestrator.

7. Redactor Node (Final Processing)

This node performs the final, permanent sanitization.

• Primary Functions: Once we receive user approval, the Redactor uses the precise

coordinates of the sensitive data to apply permanent black boxes over the targeted text

in the original PDF. It then saves this sanitized version as the final output.

• Inputs: pdf_path, sensitive_data.

• Outputs: The file path for the final final_pdf_path.

3.2.2 Workflow Logic

Our system’s intelligence lies in its conditional routing and feedback loops.

Routing Intelligence

• Orchestrator → Searcher/Detector: The initial routing is based on an LLM’s assessment

of whether the user’s prompt requires external regulatory research.

• Detector → Highlighter: After detection, the workflow always proceeds to generate a

visual preview.

• Evaluator → Detector/HITL: This routing is based on our automated quality check. The

system either loops back for refinement or proceeds to human review.
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• HITL → Redactor/Orchestrator: The final routing depends entirely on user approval. A

"Yes" proceeds to final redaction, while a "No" loops back to the beginning with new user

feedback.

Feedback Loops

• Evaluator Loop: An automated, self-correcting loop for quality improvement, limited to

three cycles to prevent recursion errors.

• HITL Loop: A human-driven refinement loop that continues until the user is satisfied with

the preview.

• State Persistence: All feedback, whether from the Evaluator or the user, is accumulated

in the sensitive_data_description list, ensuring the system’s context improves with

each cycle.

4 Results

4.1 Framework 1

To test the abilities of the first frame we’ll compare it’s limits, accuracy, and scope. These experi-

ments are meant to test the efficacy of using a LLM over traditional methods such as using regular

expressions to make changes, exploring point no. 2 of our framework goals. In the future, we would

like to develop metrics for user experience and security as well, but for this instance we will rely on

theoretical analysis. The first metric would be about recall, or the percentage of actual sensitive data

of the entire document that the agent was able to find. Next would be about precision, measuring out

of all the words that were censored, how many of these words are actually sensitive. After calculating

both of these, we can then calculate an F1 score [9], which balances both metrics and ensures that the

only the best models that are able to catch all the sensitive data (high recall) without redacting too

much normal text (high precision) are given the highest scores.

4.1.1 Comparison

Recent work as been done to improve on traditional find-and-replace methods such as RegEx [18]. In

this section, we will test the redaction of our framework against frameworks that use regex methods.

To do this, we will find the equivalent regular expressions to our sanitation qualifier required to

perform some redaction task, if possible. Here, the sanitation qualifier is the a prompt selected

or created by the user that defines what is considered sensitive and within the scope of sanitation.

Because we expect this framework to be most useful for enterprise, we selected our default sanitation

qualifier to be:
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Figure 4: User input field for the sanitation qualifier.

Company specific information which is not publicly available.

For these tests though, we’ll use prompts that can be adequately captured by regular expressions.

We’ll compare the regular expression to our sanitation qualifier and determine if the sensitive data

gets redacted. We’ll also qualitatively discuss how the sanitation qualifier compares to the regex

expression.

Table 2: Accuracy test cases comparing regex and natural language sanitation qualifiers.

Sanitation Qualifier Equivalent RegEx Raw Text Sanitized Text
Phone numbers ^(\+\d{1,2}\s)

?\(?\d{3}\)?[\s
.-]\d{3}[\s.-]\d
{4}\$

Call me at (415)
555-1234 or 415-555-
5678.

Call me at [phone
number] or [phone
number].

Email addresses [a-zA-Z0-9._%+-]+@
[a-zA-Z0-9.-]+\.[a
-zA-Z]{2,}

Contact us at sup-
port@example.com
or hr@company.org.

Contact us at [support
email] or [HR email].

IP addresses \b(?:\d{1,3}\.)
{3}\d{1,3}\b

Server logs show
192.168.0.1 failed to
connect to 10.0.0.42.

Server logs show
[Source IP address]
failed to connect
to [Destination IP
address].

SSNs \b\d{3}-\d{2}-\d
{4}\b

Employee SSN: 123-
45-6789.

Employee SSN:
[SSN].

Credit card numbers \b(?:\d[ -]*?)
{13,16}\b

Payment received
from card 4111 1111
1111 1111.

Payment received
from card [credit card
number].

4.1.2 Scope

The main advantage of our framework is that the scope is much broader than that of traditional find

and replace methods such as RegEx. Our framework captures natural language context that regular
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Table 3: Redaction scope test

Sanitation Qualifier Raw Text Sanitized Text
Company specific informa-
tion which is not publicly
available.

We received the final in-
voice from DeltaTech—total
amount: $48,500—which
I’ve forwarded to Finance.

We received the final
invoice from [Company
name]—total amount: [In-
voice Amount]—which I’ve
forwarded to Finance.

Company specific informa-
tion which is not publicly
available.

El informe financiero de
TechNova S.A. muestra que
en el segundo trimestre de
2025 tuvo pérdidas por $1.2
millones debido a una fil-
tración de datos confiden-
ciales.

El informe financiero de
TechNova S.A. muestra que
en el [Time period] tuvo pér-
didas por [Financial loss] de-
bido a [Incident description].

Phone numbers During the client onboard-
ing call, Maria accidentally
read out her mobile as +1
(415) 77-88-990 (sometimes
she writes it as 415.7788990
in Slack). She also men-
tioned her backup line: "four
one five, double-seven, eight
eight nine nine zero" in case
the first doesn’t go through.

During the client onboard-
ing call, Maria acciden-
tally read out her mobile
as [mobile phone number]
(sometimes she writes it as
[mobile phone number] in
Slack). She also mentioned
her backup line: "[backup
phone number]" in case the
first doesn’t go through.

expressions simply can’t be created to utilize. The redaction scope tests highlight how the scope

is greater than that of traditional redaction methods. In the first scenario, when the default prompt

is used, the model correctly reasons that both the dollar amount and information about a partner

company are both pieces of private information, and redacts them. The second scenario tests the

model’s multilingual capabilities, and surprisingly, it works just as well as in the first scenario. The

third scenario shows how many different formats could be considered a "phone number" and the

model identifies and redacts all of this data. Something like a RegEx expression could not adequately

capture all of this nuance - especially in adversarial scenarios.

4.2 Framework 2

In designing our agentic sanitizer, we determined that simply detecting and redacting data in a single

pass was insufficient for enterprise-grade reliability. To address this, we integrated two critical

components: the Evaluator node and the Human-in-the-Loop (HITL) node. This was the most

important architectural decision we made to transform our system from a simple prototype into

a reliable, self-improving, and accountable AI solution [15]. These nodes form a two-tier quality

assurance framework that directly increases our system’s recall.
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Recall is the measure of how successfully our system finds all relevant sensitive information, thereby

minimizing false negatives (missed items). We designed both nodes to be instrumental in maximizing

this metric.

We specifically designed the Evaluator to hunt for false negatives. Its core function is to ask, "Based

on the requirements, did the Detector miss anything?" Example: Our user prompt is "redact all

sensitive data in the pdf." The Detector finds names and address but missed sensitive UID, Finanical

Information like amount, and date. After the evaulator node, it detected UID as a sensitive information

and still ignored amount of money. That’s why we also added human-in-the-loop to further increase

the recall. We gave user prompt like "You missed some finanical information, amount of money the

sponsor can provide." Then it works and sucessfully detected all the sensitive information in the PDF.

5 Limitations

5.1 Automation

Here, we refer to automation as the ability of a system to know when it needs to be called upon.

More frequent interaction points for an agent allow for a higher degree of automation. Internally,

we implemented some automation between our agents - a higher level agent decides whether some

text contains sensitive information, and a lower level agent performs the actual redaction. However

across our frameworks, we have a low degree of automation overall. Our system detects when the

user might want to use the agent, but the user must actively request for the agent to scan the data. To

contrast, systems like GitHub Copilot suggestions have a high degree of automation, because the user

never has to actively request for the agent to be called.

One potential approach for increasing the autonomous capacity of our systems would be to use a

series of diff changes rather than scanning the whole text when passing it into the LLM. This would

keep input token counts low while still capturing all of the content. However, overly frequent passes

might lose some contextual information that the model needs to make accurate inference. In addition,

individual API requests will make the entire system slower. For these reasons, we opted not to focus

too much on the automation aspect of this project and instead focused on the structure of the system

instead.

5.2 Security

Here, we refer to security constraints as the limitations imposed by relying on external services

to process potentially sensitive data. While our system is designed to sanitize text effectively, it

must interact with large language models through third-party APIs. This introduces a fundamental

constraint: once data leaves the local environment, there is a risk that sensitive information could
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Figure 5: The preview before evaluator node and human-in-the-loop node. Not everything gets
redacted on the first pass, but there is progress.
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Figure 6: The preview after the evaluator node. In this example, the evaluator successfully identified
and redacted all additional sensitive content. If the evaluator misses anything, the human-in-the-loop
node gives the user additional control to perform redaction on any straggling sensitive content.
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Figure 7: The final redacted PDF. This method of redaction removes the sensitive text and adds addi-
tional black boxes covering it’s previous location, indicating that there was a redaction performed."
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be exposed, cached, or logged outside the user’s control. Although these services often provide

assurances of privacy, such guarantees remain outside the scope of our system.

Internally, we mitigated this issue by restricting the amount of data passed at any one time and

ensuring that sensitive outputs are only stored temporarily within the processing pipeline. However,

this does not fully eliminate the concern. In contrast, a fully self-hosted language model deployment

would provide greater assurances of data sovereignty, since no external communication would be

required. The trade-off, however, is that such models are computationally expensive and difficult to

maintain, which places them outside the scope of this project. For these reasons, security constraints

remain a key limitation in the current implementation, even though we adopted a cautious design to

minimize exposure.

5.3 Reliance on Language Model

Here, we refer to dependence on language models as the extent to which the success of the system is

tied to the capabilities and limitations of large language models. The pipeline relies on these models to

identify sensitive information, interpret context, and generate appropriate redactions. While modern

models demonstrate strong generalization, they are not immune to issues such as hallucinations,

inconsistent reasoning, or failure to follow strict formatting instructions. These shortcomings directly

affect the accuracy and reliability of the system.

Internally, we attempted to reduce this dependence by constraining the model’s role to specific

subtasks and by designing prompts that explicitly enforce structure. However, this does not eliminate

the underlying reliance. If the model misinterprets the prompt or generates non-deterministic outputs,

the downstream processes cannot fully recover. In contrast, rule-based approaches or hybrid systems

could provide stronger guarantees for consistency, but they often lack the flexibility required to

handle diverse real-world inputs. For these reasons, dependence on language models remains a core

limitation of the current system, even though careful design choices helped mitigate its impact.

6 Findings, Conclusions, Implications, and Future Work

6.1 Findings

The results of the implementation phase confirm that the proposed agent-based DLP frameworks

successfully addressed the central research problem: enabling large language model (LLM) agents to

perform dynamic, context-aware data sanitization while maintaining human oversight. The findings

align closely with the subproblems identified in Chapter 1 and are summarized below.
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Addressing the Trigger Mechanism

The system effectively detected when to initiate sanitization processes without requiring manual

intervention. Automated monitoring of input sources (e.g., uploaded documents, draft emails)

reliably activated the orchestrator. This supports the feasibility of embedding an autonomous trigger

mechanism within an agentic framework, thereby reducing reliance on human-initiated actions.

Executing Core Logic and Contextual Redaction

The LLM agents demonstrated the ability to:

• Parse unstructured text for contextually sensitive elements rather than relying solely on

predefined patterns.

• Apply redaction decisions that balanced the need for data protection with the preservation

of document utility.

• Present redaction proposals to the user in a clear, reviewable format.

This outcome validates the hypothesis that context-aware agentic reasoning can outperform static

rule-based filtering in handling varied and nuanced content.

Coordinating Orchestration and Iteration

The orchestrator maintained control over the sequence of detection, redaction, and review stages.

When user feedback indicated missed or incorrect redactions, the system was able to re-trigger

the relevant modules and incorporate the changes without disrupting workflow. This iterative loop

ensured continuous alignment with user expectations and improved the final output quality.

Integration of Human-in-the-Loop Review

The human-in-the-loop component proved central to ensuring trust and accuracy. In practice, users

engaged with the preview stage to validate or override the agent’s decisions. This process not only

prevented over-redaction or under-redaction but also increased user confidence in the automated

system.

Security Outcomes

The framework’s secure design—incorporating data encryption, controlled tool calls, and isolated

processing—successfully prevented any leakage of sensitive content during the sanitization process.

This confirmed that the integration of third-party LLM APIs can be done without exposing private

data, provided that strict security protocols are observed.
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Unexpected Findings

While the primary focus was on textual data sanitization, an incidental observation was that the

framework’s modular structure naturally lends itself to multimodal extension. The same orchestration

and validation pipeline could, with minimal adjustments, be adapted for image or structured data

sanitization. Although outside the study’s original scope, this finding suggests a broader applicability

of the design principles.

Summary

Overall, the findings demonstrate that the proposed frameworks met their intended objectives, solved

the subproblems outlined in the problem formulation, and operated effectively under test conditions.

The results reinforce the potential of LLM-based agents to enhance traditional DLP processes by

introducing adaptable, context-sensitive decision-making paired with human validation.

6.2 Implications

The successful implementation of agent-based DLP frameworks carries important implications at

multiple levels: organizational, academic, and societal. These implications extend the relevance of

the study beyond its immediate scope and highlight the broader value of integrating agentic AI into

sensitive data management workflows.

1. Organizational Implications

For organizations, the framework provides a pathway toward scalable and intelligent data protection

solutions. Traditional DLP systems often rely on static, pattern-based methods that can generate

both false positives and false negatives. By contrast, the agentic approach introduces context-aware

reasoning and iterative validation, which reduces error rates and lowers the manual burden on security

teams.

• Operational Efficiency: Automation of initial detection and redaction accelerates the

sanitization process, enabling staff to focus on higher-level decision-making rather than

repetitive review tasks.

• Regulatory Compliance: The integration of human-in-the-loop oversight ensures that

redactions remain transparent and auditable, supporting adherence to privacy regulations

such as GDPR, HIPAA, and sector-specific compliance standards.

• Risk Mitigation: By reducing the likelihood of sensitive data leakage, organizations

strengthen trust with clients, partners, and regulators while minimizing reputational and

financial risks.
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2. Implications for the Field of AI and Data Security

The study contributes to the evolving body of research on agentic AI by demonstrating a novel

application in data loss prevention.

• Validation of Agentic Design: The results confirm that orchestrator-driven workflows and

human-in-the-loop validation are effective design strategies for sensitive information tasks,

offering a template for future AI-security integrations.

• Interdisciplinary Relevance: The framework bridges concepts from reinforcement learning,

natural language processing, and cybersecurity, suggesting that hybrid approaches can better

address complex challenges than siloed methods.

• Research Momentum: These findings may stimulate further investigation into agent-based

frameworks for adjacent domains, including document classification, compliance auditing,

and real-time risk assessment.

3. Societal and Ethical Implications

Beyond organizational and technical domains, the adoption of agentic DLP systems has wider societal

significance.

• Data Privacy Protection: As digital communication continues to expand across personal,

professional, and governmental contexts, improved sanitization frameworks play a crucial

role in protecting individuals from identity theft, fraud, and unauthorized surveillance.

• Transparency and Trust: The explicit preview-and-approval stage empowers end-users,

promoting transparency in AI decision-making and helping to counter skepticism toward

automated systems.

• Ethical Responsibility: By enforcing strong safeguards against data leakage, these frame-

works contribute to responsible AI deployment, aligning technical innovation with ethical

stewardship of sensitive information.

Summary

The implications of this project underscore its broader significance: organizations gain a more reliable

and efficient tool for safeguarding sensitive information, the AI and cybersecurity fields benefit from

a novel application of agentic frameworks, and society at large is better positioned to manage risks

associated with the increasing digitization of personal and organizational data. Collectively, these

outcomes demonstrate the importance of embedding context-aware, human-centered AI systems into

critical areas of data governance.
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6.3 Conclusion

This implementation features a pipeline that operates as a sophisticated, agent-driven workflow driven

by a central controller that manages the entire data sanitation life cycle. The process begins when a

user uploads a document or writes an email, prompting the orchestrator to first parse the request and

if needed, use a searcher to improve its understanding with the sanitation sensitivity. The detector

module follows this and generates a preview of proposed changes, which the user is then able to

review for an in-the-loop validation step. This iterative feedback loop is where the only part where

user input is required, and can allow for further adjustments to the sanitation until the final redaction

is approved and executed.

6.4 Future Work

While the project achieved its primary objectives, several avenues remain for advancing the capabili-

ties and applicability of the developed agent-based DLP frameworks. These opportunities build upon

the limitations noted in the study and the unexpected findings observed during implementation. Data

loss prevention solutions are important for protecting sensitive information from unauthorized access

and leaks.[11] As cyber threats continue to evolve, traditional DLP methods often fail to keep pace,

necessitating advanced approaches that can handle the complexities of modern data environments.

1. Multimodal Expansion

Although the present work focuses on textual data, the modular pipeline and orchestrator design

could be extended to support multimodal content, including images, scanned documents, audio

transcripts, and video captions. This would require the integration of optical character recognition

(OCR), speech-to-text engines, and visual recognition models capable of detecting sensitive elements

in non-textual formats.

2. Adaptive Learning from User Feedback

Currently, human-in-the-loop review is essential for validating redactions, but the system does not

adapt its decision-making based on prior interactions. Incorporating reinforcement learning or

continual fine-tuning mechanisms could enable the agent to learn from repeated patterns in user

feedback, thereby improving accuracy and reducing the frequency of manual corrections over time.

Techniques like federated learning could allow for massively trained and even personalized models

by distributing training over many distributed machines [16].
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3. Expanded Evaluation Across Domains

The framework was tested in controlled scenarios using synthesized datasets representative of typical

enterprise content. Future evaluations should apply the system to a wider range of real-world datasets

across industries such as healthcare, finance, legal services, and government communications. This

would assess both generalizability and domain-specific sensitivity detection requirements [20].

4. Integration with Enterprise Systems

To increase practical adoption, the framework could be integrated directly into enterprise DLP

infrastructures, content management systems, and collaboration tools (e.g., email servers, cloud

document platforms, messaging services). Real-time monitoring and inline sanitization could further

enhance usability, enabling sensitive content filtering before it leaves a secure environment.

5. Enhanced Adversarial Robustness

While the system demonstrated secure handling of data, future iterations should undergo systematic

adversarial testing. This includes evaluating its resilience to prompt injection attacks, deliberate obfus-

cation of sensitive information, and adversarial examples designed to evade detection. Incorporating

adversarial training techniques could strengthen robustness against emerging threats.

6. Cross-Language Support

Expanding beyond English to support multilingual sanitation is an important future direction, espe-

cially for organizations operating in diverse linguistic environments. This would involve adapting

tokenization, sensitivity detection, and contextual reasoning for languages with different syntactic

and semantic structures. Though robust implementations like these would lead to the most secure

data loss prevention systems, the models that we currently use have multilingual capabilities as shown

in our testing, and a full multilingual system could easily adapt to our current data pipeline.

7. Long-Term Maintainability and Governance

Future deployments should include research into the governance structures necessary to ensure that

the agent’s redaction policies remain aligned with evolving privacy regulations and organizational

compliance standards. Developers can also have an easier time implementing new features, due to

employing AI assistants to their codebases. [7] This includes developing audit trails, explainability

mechanisms for redaction decisions, and role-based access controls for sensitive datasets.
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8. Hybrid Methods

Hybrid methods could use LLMs in tandem with traditional find-and-replace methods to supercharge

the entire framework. For example, with large PDFs, it may be very costly to use LLMs, and the

text might not fit in the context window of any given model. Equipping the LLM with more robust

regex capabilities would allow the model to find certain sensitive strings and decide if they need to

be redacted on a case-by-case basis. [3] An example of this would be searching for all the phone

numbers in a document, and redacting only private phone numbers, not public ones. This idea of

private/public information would be difficult for traditional methods to integrate, but LLMs would

have the contextual understanding necessary to make the executive redaction decisions.

Summary

By pursuing these extensions, the framework could evolve from a proof-of-concept into a versatile,

production-ready DLP solution capable of operating across modalities, domains, and organizational

environments. These directions not only enhance technical performance but also strengthen trust,

compliance, and security in AI-driven data protection workflows.
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